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ABSTRACT

Spectral remote observations of dust properties from space and from the

ground creates a powerful tool for determination of dust absorption of solar

radiation with an unprecedented accuracy. Absorption is a key component in

understanding dust impact on climate. We use Landsat spaceborne measurements

at 0.47 to 2.2 _m over Senegal with ground based sunphotometers to find that

Saharan dust absorption of solar radiation is two to four times smaller than in

models 1-3. Though dust absorbs in the blue, almost no absorption was found for

wavelengths > 0.6 _m. The new finding increases by 50% recent estimated solar

radiative forcing by dust and decreases the estimated dust heating of the lower

troposphere. Dust transported from Asia shows slightly higher absorption probably

due to the presence of black carbon from populated regions. Large scale application

of this method to satellite data from the Earth Observing System can reduce

significantly the uncertainty in the dust radiative effects.

Dust, originating from natural sources and man-made soil disturbance, is the

dominant feature in global maps of aerosol 4-6. Its forcing of climate is important but

highly uncertain 3. Dust was shown to heat significantly the lower troposphere in

the tropics 7. The main uncertainty in the dust radiative effects is the dust absorption

or single scattering albedo, mo (ratio of scattering to total light extinction) 3. Models of

dust optical properties are based on uncertain in situ measurements 8, with size

dependent sampling efficiency 9, complex sample preparation, and deduction of the

absorption from the sample reflectivity that depends on several weak assumptions 8.

Therefore, in situ absorption measurements tend to exaggerate the dust

absorption 10. Remote sensing techniques measure the properties of the undisturbed

aerosol in the entire atmospheric column, relevant to aerosol direct radiative

forcing of climate.

Dust absorption can be expressed by its imaginary index of refraction: ni=-

0.008 in models 11,12 (or C0o=0.63 at 0.5 _tm) 3. Lower absorption was reported by Levin

et a113 of ni=-0.003 (O3o~0.87) for heavy dust. While in the blue and UV parts of the



spectrum iron compounds can absorb sunlight 8, the absorption in the visible may
originate probably only from black carbon absorptionS,14from urban pollution or
biomass burning smoke mixed with the dust. This absorption by Saharan dust,
measured in situ, contradicts published results of radiance measurements. Flux
divergence measured from aircraft 15reports O)o=0.95for broad solar spectrum.

Analysis of Landsat data derived imaginary index indistinguishable from zero16
(ni=-0.001+0.001)at 0.55 to 0.86_tm.Ackerman and Chung 17found that measured

value of _o = 0.75would incorrectly predict that dust should reduce ERBE
measurements of the reflected solar flux over bright desert. Here we improve on
previous satellite techniques16,18by combining satellite and ground based remote
measurements19,20and extending the spectral range to 2.2 _tm.

The remote sensing method is illustrated in Fig. 1. For dark surface (ocean),
dust increases the apparent reflectance of the earth + atmosphere system, with only
small dependence on COo.For brighter surfaces (reflectance of 0.25), COodetermines if
the dust will increase or decreasethe apparent reflectance. The sensitivity is even
higher for brighter desert surfaces.Over a bright surface dust can absorb the direct
solar radiation and radiation reflected from the earth surface, increasing the
absorption efficiency. This mechanism depends on the size of dust particles and
their optical properties.

To derive the dust size distribution we use sky aureole radiance measured by
the AErosol RObotic NETwork (AERONET)19.Measurements from Capo Verde,
west of the Saharaand SedeBoker, Israel, east of the Saharashow that dust size
distribution is dominated by a coarsemode with effective radius between 1.5 and 2.5
_tm20.Similar results were reported from aircraft measurements21and models1. In
Capo Verde, a smaller coarse mode, 0.4-0.5_tm,is also present. Dust scattering
efficiency of 0.83m2/g measuredby Li et al.6on the western side of the Atlantic
ocean in Barbados correspond to effective radius of 1 _tm;smaller, as expected from
the values of 1.5-2.5_tm used here closer to sources. AERONET measurements of
Asian dust arriving across the Pacific Ocean to SanNicholas island, off the west
coast of US shows effective radius of 1.5 _tm.

Knowing the size, dust absorption is derived from simultaneous Landsat
images and sunphotometer measurements in Senegal22.For the sun-view direction,
the dust scattering angle is 148° - thus we do not expect significant effects of particle
nonsphericity23,24.Data from May 3, 1987areused as the lessdusty - "clear" day

(sunphotometer optical thickness at 0.64_tmof "¢64=0.8) to derive the desert

reflectance, p. Then p, is used to calculated the expected apparent reflectance, P*c' in

the dusty day ('_64 = 2.4) for several values of COoand compared with the measured

apparent reflectance in the dusty day, P*m (Fig. 2A). Spectral dust absorption is

determined by fitting the measured radiance to the calculated one for each channel.

To explain the increase in the earth-surface reflectance of 0.06 due to the presence of



dust a close to zero absorption has to be used. Even ni=-0.004 (0}0=0.83at _=0.65 _m)
would causea decreaserather than increase in the apparent reflectance (Fig 2A).
Uncertainty in the effective radius or real part of the refractive index result in

uncertainty of only Ani=+0.0005or Acoo=+0.005(Fig. 2B). The results are compared
with the literature. Note that while the increased absorption in the blue channels is
expected due to the presenceof iron oxides in hematites3, the small absorption at
1.65_tmis surprising, but found already in the spectra of Mars, due to mineral-
hydrate mixtures 25.

Landsat data over the oceanserve as a consistency check to the dust model
(Fig. 2C). The measured spectral apparent reflectance is similar to the calculated
values for the clear and dusty days. Real part of refractive index, nr=1.22 at 2.1 ].tm12,
cannot explain the measurements. Therefore index nr=1.46 for 1.65and 2.1 pm is
used. For short wavelengths there is only weak sensitivity to nr due to the large
ratio between the effective particle size and the wavelength, and nr=1.53 is used.
What other sources of errors, except for uncertainty in the dust particle size and
nonsphericity can affect the results? Surface angular effects are expected to be
negligible for the nadir view 26.The uncertainty in the calibration of the sensor of
_10%27,has a small effect since dust absorption is derived from the difference
between the dusty and lessdusty day. Calibration error of 10%causesan error of
Acoo=_+0.001.

On April 25, 1998a dense plume of Asian dust arrived at San Nicholas island

along the California coast. Optical thickness of _64=0.4 was measured simultaneously

with a Landsat image. The corresponding clear day (_64=0.05) was April 9, 1998. This

dataset provides the opportunity to compare the results to non-Saharan dust. The

island is vegetated, thus surface reflectance for _<0.8 _m is too low to derive COo. For

;_=0.86 and 1.65 _tm we found COo= 0.93 and 1.00 respectively. This large spectral

change, beyond the lower accuracy limits in this case (ACOo=_+0.02) due to the smaller

dust opacity, results probably from an external mix of black carbon from urban

activity in east Asia and dust.

Dust affects the energy balance of the earth both in the solar spectrum and in

the IR 1-3. The solar radiative forcing at the top of the atmosphere is very sensitive to

absorption by dust. Tegen et al. 1, used a model with ni=-0.006i at 0.55 p,m ({00=0.85).

They found that dust from man-made soil disturbance extract a globally averaged

forcing of -0.25w/m 2 in the solar spectrum. The present {00=0.97 at 0.55 _tm scaled

across the solar spectrum, produces 2-3 times less absorption and magnifies the solar

forcing by 50% to -0.40 w/m 2. Sokolik and Toon 3 used single scattering albedo of

o}0=0.85 at 0.50 _tm to calculate a representative value of radiative forcing of -0.25

w/m 2 over the land and-0.6 w/m 2 over the ocean. Our lower dust absorption

increases the forcing to -0.65 and -0.75 w/m 2 respectively, similar to that of sulfate or

smoke aerosol 3. The uncertainty range 3, mainly due to uncertainty in the strength



of the sources, would change to -0.2 to -2.0 w/m 2, thus can be comparable but of

opposite sign to the total greenhouse forcing. The impact of the new finding on the

radiative forcing calculations is summarized in Table 1. The lower dust absorption

increases significantly the dust forcing at the top of the atmosphere. The IR forcing,

not discussed here, was shown to mitigate a third to half of the solar forcing17, 28.

We were able to determine the dust properties using a few coordinated

Landsat images, acquired in advance, with ground based measurements. Several

publications were shown to indicate that the derived low dust absorption can be

representative for Saharan dust. The global data availability will improve by several

orders of magnitude with the launch in 1999 of the MODIS instruments on the

Earth Observing System with 8 solar bands29, 30, the CERES instrument for radiative

flux measurements31j7, 32 and the measurements of 100 AERONET ground based

sun/sky radiometers 19. With these measurements we expect to be able to

characterize the global climatology of dust optical properties and to decrease the

uncertainty in dust effect on climate due to better characterization of the rate of dust

emissions and their radiative properties.
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Table 1: Effect of the smaller dust absorption found in this study on the dust

radiative forcing in the solar spectrum. Note that the global estimates for ref. [3]

assumed an equal coverage of land and ocean in the dust belt.
Reference

Tegen et al. 1

same but with present smaller

absorption

Sokolik and Toon 3

representative value

same but with present smaller

absorption

Sokolik and Toon 3 uncertainty

range

same but with present smaller

absorption

Land Ocean Global

-0.25w/m 2

-0.40 w/m 2

-0.25 w/m 2 -0.6 w/m 2 -0.42 w/m 2

-0.65 w/m 2 -0.75w/m 2 -0.70 w/m 2

-0.08 to -0.9 -0.2 to -2.2 -0.1 to -1.5

w/m 2 w/m 2 w/m 2

-0.2 to -2.3 -0.2 to -2.7 -0.2 to -2.5

w/m 2 w/m 2 w/m 2



Legends for figures:

Fig. 1: The apparent reflectance of the earth surface as observed from space and

influenced by the atmosphere at 0.66 _tm. Solid line - no dust (z=0) only molecular

scattering, broken lines - dust with low absorption, C0o=0.96, and high absorption,

C0o=0.87, respectively. Optical thickne.ss, % of 0.4 and 0.8 is indicated. The concept was

explored by Fraser and Kaufman 32.

Fig. 2: (A): Apparent reflectance at the top of the atmosphere over the desert

measured by Landsat TM (heavy gray lines) for optical thickness of 0.8

(dashed) and 2.4 (solid). The measurements are compared with calculations

(thin black lines) for refractive indices and effective radius given in the

caption. The apparent reflectance increased due to the presence of dust by

~Ap=0.06 (for the central spectral range of 0.55-1.6 _tm) despite the high surface

reflectance of 0.2 to 0.4. Calculations for imaginary index of -0.004 cannot

explain this change in the apparent reflectance, indicating small or no

absorption.

(B): The spectral single scattering albedo, COo,for the two values of the effective

radius, that fit the change in the brightness in Fig. 2A (COo=l - non-absorbing

dust and COo=0 - fully absorbing). For comparison COovalues derived or used in

the literature are given: F - Fouquart et al. 15, W- WMO 12, T- Tegen et al. 1, C -

Carlson and Benjamin 2, S - Sokolik and Toon 3.

(C): Apparent reflectance, as in Fig. 2A but over the ocean, for the absorption

indicated in Fig. 2B and several values of real refractive index and effective radius.

The real part of the refractive index is kept constant or decreasing to 1.22 at 2.1 _tm.
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Fig. 1: The apparent reflectance of the earth surface as observed from space and

influenced by the atmosphere at 0.66 _m. Solid line - no dust (z=0) only molecular

scattering, broken lines - dust with low absorption, O)o=0.96, and high absorption,

C0o=0.87, respectively. Optical thickness, z, of 0.4 and 0.8 is indicated. The concept was

explored by Fraser and Kaufman 32.
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Fig. 2: (A): Apparent reflectance at
the top of the atmosphere over the
desert measured by Landsat TM
(heavy gray lines) for optical
thickness of 0.8 (dashed) and 2.4
(solid). The measurements are

compared with calculations (thin
black lines) for refractive indices and

effective radius given in the caption.
The apparent reflectance increased
due to the presence of dust by
~Ap=0.06 (for the central spectral
range of 0.55-1.6 l_m) despite the
high surface reflectance of 0.2 to 0.4.
Calculations for imaginary index of -
0.004 cannot explain this change in
the apparent reflectance, indicating
small or no absorption.

(B): The spectral single scattering
albedo, coo, for the two values of the

effective radius, that fit the change in
the brightness in Fig. 2A (O)o=l -

non-absorbing dust and O)o=0 - fully
absorbing). For comparison COo
values derived or used in the

literature are given: F - Fouquart et

al. 15, W- WMO 12, T- Tegen et al. l , C

- Carlson and Benjamin 2, S - Sokolik
and Toon 3.

(C): Apparent reflectance, as in Fig.
2A but over the ocean, for the

absorption indicated in Fig. 2B and
several values of real refractive index

and effective radius. The real part of
the refractive index is kept constant
or decreasing to 1.22 at 2.1 I_m.



Suggestion for cover of the issue:

April, 1, 1987
TM-Afri_:_ t.t,;'t)l /fVr')

April, 17, 1987
Tgl-hfri_:h (.'i,;'tY/N't}

Cover: Color composite of the two dusty Landsat TM satellite scenes. Heavy and

variable dust was measured April 1, 1997 and uniform heavy dust on April 17, 1987.

The scenes are used to derive the dust properties and radiative forcing of climate.


